Kripa Varanasi: Innovating at interfaces Featured

    MIT engineer’s research on surfaces is improving everything from power plants to ketchup bottles.
    MIT Varanasi 01 Press Web
    “If you really understand the phenomena, you can reduce it to a few nondimensional parameters,” MIT mechanical engineer Kripa Varanasi says. That collapses the complexity into manageable formulas and phase diagrams, “and then we can design new processes, new products, and zero-tradeoff solutions.” That approach, he says, has been “at the heart of the companies we’ve started.”
    Photo, Bryce Vickmark.

    Ketchup’s sluggish pace as it oozes out of its bottle is a longstanding nuisance — but one that is about to be upended by a new product coming to market. The brainchild of MIT mechanical engineer Kripa Varanasi and his students, a new coating called LiquiGlide is set to make the transition from the laboratory to consumer and industrial markets.

    LiquiGlide renders a surface highly slippery and allows every last drop of ketchup — or almost any other viscous product, from paint, to glue, to cosmetics — to flow from its container without sticking, saving billions of gallons of product from going waste.

    “Viscous products sticking to the inside of containers leads to huge losses across industries,” Varanasi says. “For example, in paint manufacturing alone, paint sticking to the inside of mixing and holding tanks costs the industry more than 100 million gallons of lost product and billions of dollars per year in associated waste costs. Using the LiquiGlide platform, we are on a mission to eliminate waste generated across manufacturing applications, in areas ranging from food and agrochemical production to health care and energy, to usher in a new era of sustainable manufacturing.”

    Read more at the MIT News Office.

    back to newsletter

    David L. Chandler | MIT News Office
    January 19, 2017